Examen Parcial Introducción a los Algoritmos - 23 de Abril de 2018 Comisiones Turno Mañana

nota	1	2	3	4	5

Apellido y Nombre:

Cantidad de hojas entregadas: ___ (Numerar cada hoja.)

- 1. [10 pto(s)] Definir la función $esMultiplo: (Int, Int) \to Bool$ que dado un par de enteros verifica si uno es múltiplo del otro (o viceversa) Ejemplos:
 - (I) esMultiplo.(9, 27) = True
 - (II) esMultiplo.(24, 27) = False
- 2. (a) [15 pto(s)] Definir la función recursiva dividir : $[(Int, Int)] \rightarrow [(Int, Int)]$ que dada una lista de pares de números, construye una lista de pares con los respectivos cociente y resto de cada par. Ejemplo:
 - (I) dividir.[(11, 2), (2, 11), (24, 8)] = [(5, 1), (0, 2), (3, 0)]

Ayuda: suponemos definidos los operadores div y mod

- (b) [5 pto(s)] Evaluar manualmente la función utilizando el ejemplo (I). Justificar cada paso.
- 3. (a) [15 pto(s)] Definir una función recursiva $hacerA: String \to String$ que dada una string cambia todas sus vocales por 'a'. Ejemplos:
 - (I) hacerA. "¡Pero, che!" = "¡Para, cha!"
 - (II) hacerA. "Famaf" = "Famaf"
 - (b) $[\mathbf{5} \ \mathbf{pto(s)}]$ Usar la función anterior para definir la función $palabraMacabra: String \to Bool$ que determina si la única vocal que aparece en una String es la 'a'. Sugerencia: ver que es el único caso en que aplicar hacerA no la cambia.
 - (I) palabraMacabra. "Famaf" = True
 - (II) palabraMacabra. "Somos los Orozco" = False
 - (III) palabraMacabra. "sdfghjkl" = True
- 4. [25 pto(s)] Dadas las siguientes funciones invertir : $[Num] \rightarrow [Num]$, y sum : $[Num] \rightarrow Num$

demostrar por inducción la siguiente propiedad

$$sum.(invertir.xs) = -sum.xs$$

5. [25 pto(s)] Dada las siguientes funciones recursivas filtrarCeros : $[Num] \rightarrow [Num]$ y contarCeros : $[Num] \rightarrow Num$, definidas como:

$$filtrarCeros.[] \doteq []$$

$$filtrarCeros.(x \triangleright xs) \doteq ((x = 0) \rightarrow x \triangleright filtrarCeros.xs$$

$$\Box(x \neq 0) \rightarrow filtrarCeros.xs$$

$$)$$

$$contarCeros.[] \doteq 0$$

$$contarCeros.(x \triangleright xs) \doteq ((x = 0) \rightarrow 1 + contarCeros.xs$$

$$\Box(x \neq 0) \rightarrow contarCeros.xs$$

$$)$$

demostrar por inducción que contarCeros.xs = #(filtrarCeros.xs).